Evaluation of gene expression changes of miR156 and miR172 and their targeted genes (AP2 & SPL3; vernalization factors) in two bread wheat (Triticum aestivum L.) cultivars
Authors
Abstract:
Floral transition through vernalization has a large influence on cold tolerance and agronomic traits in winter cereals. It is now apparent that in many plants small RNAs play critical roles in determination of the flowering time. There is evidence suggesting that the miR156 and miR172 families play a key role in the flowering transition of plants. In this study, the expression of two temporally regulated miRNA (miR156 and miR172) and their targeted genes (SPL3, AP2) were investigated in the winter bread wheat cv. Norstar and the spring bread wheat cv. Baj in 2017-2018 cropping season. The vernalization was exposed to the cold treatments (4°C) for 2 and 14 days at seedling stage. Time to flowering was estimated using the final leaf number (FLN), which significantly decreased under vernalization treatments, only in winter cultivar 'Norstar'. Moreover, analysis of variance showed that vernalization treatments × cultivarsv interaction effect was significant on FLN. Comparison of gene expression using bootstrapping method showed that the expression of miR172 was significantly down-regulated only in Norstar under vernalization treatments. Similarly, the expression of miR156 was completely different under vernalization treatment in two cultivars. Increased expression of miR156 in Baj cultivar was not significant, but vernalization treatment significantly decreased the expression of this gene in cv. Norstar. Although the induction of AP2 expression during vernalization (14 days) was observed in both cultivars, but, the expression levels of SPL3 were only significantly decreased in cv. Norstar, and this reduction was more in two-day vernalization. Unexpectedly, in this experiment, there was no relationship between up-regulation of both miRNA and down-regulation of their targeted genes in two bread wheat cultivars. These results demonstrated that molecular mechanism of flowering time in bread wheat is complex and still largely unknown.
similar resources
Effect of salinity stress and application of salisylic acid on expression of TaSC and TaNIP genes in two bread wheat (Triticum aestivum L.) cultivars
Salinity is one of the environmental stresses that affects bread wheat grain yield in most parts of the world. One of the basic strategies to mitgiate the effect of non-biological stresses such as salinity is genetic improvement of crop plants. Identification of stress-associated genes is a prerequisite for genetic improvement. In the present study, the role of a number of genes in the aquapori...
full textCharacterization and Expression of High Temperature Stress Responsive Genes in Bread Wheat (Triticum aestivum L.)
To elucidate the effects of high temperatures, wheat plants (Triticum aestivum cv. CPAN 1676) were given heat shocks at 37°C and 42°C for two hours, and responsive genes were identified through PCR-Select Subtraction technology. Four subtractive cDNA libraries, including three forward and one reverse subtraction, were constructed from three different developmental stages. A total of 5500 ESTs w...
full textEffect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars
A factorial experiment (based on completely randomized design) with three replications was conducted in faculty of agriculture of Urmia University, Iran in 2016 to investigate the effect of soil Zn deficiency on the expression of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in Zn-efficient and Zn-inefficient bread wheat cultivars. Cv. Bayat (Zn-efficient) and cv. Hirmand (Zn-in...
full textIsolation and characterization of ERECTA genes and their expression patterns in common wheat (Triticum aestivum L.)
The orthologue of Arabidopsis ERECTA gene (ER) in wheat, TaER, is considered to be a promising candidate gene for the genetic improvement of water use efficiency (WUE) and drought tolerance in breeding programs. In this study, we isolated two distinct homologues (TaER1 and TaER2) of TaER genes in common wheat through in silico screening and PCR-based homologous cloning. Sequence analysis reveal...
full textStability of four Croatian bread winter wheat (Triticum aestivum L.) cultivars for quality traits
Stability of breadmaking quality of four Croatian bread winter wheat cultivars was investigated using rheological traits from the farinogram (dough development time, stability, degree of so�ening, water absorption, Hankoczy quality number) and the extensogram (extensibility, maximum resistance, ratio of resistance to extensibility, energy) and the indirect traits (protein content, wet gluten co...
full textNovel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and...
full textMy Resources
Journal title
volume 21 issue 4
pages 315- 327
publication date 2020-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023